26.02.2013 |
starfox
Cheerilee's Student
Trixies Quizmaster
Beiträge: 5.620
Registriert seit: 16. Aug 2012
|
RE: Miss Cheerilee Fanclub
Lange Zeit war es still in diesem Fanclub und ich konnte es einfach nicht mehr mit ansehen, wie mein absolutes Lieblings-BG-Pony ein Schattendasein fristet.
Darum habe ich AppleD4sh gebeten, mir den Club zu übertragen. Ich habe einen neuen Startpost verfasst, in der Hoffnung weitere Fans für Miss Cheerilee begeistern zu können und dem Fanclub wieder etwas mehr Aktivität zu verleihen.
Dabei brauche ich natürlich eure Mithilfe, postet Bilder und unterhaltet euch über die tollste Lehrerin die es gibt^^
Und ein Wallpaper hab ich auch mitgebracht
|
|
|
26.02.2013 |
Hagi
Travelpony
Beiträge: 6.116
Registriert seit: 08. Sep 2012
|
RE: Miss Cheerilee Fanclub
Erhmaghed!
Wie kommt es das ich noch nicht im Cheerilee Fanclub bin?
Ich bitte darum das baldmöglichst zu korregieren
Cheerilee is best Teacher
|
|
|
26.02.2013 |
MaSc
Saucy Mod
Beiträge: 17.765
Registriert seit: 19. Nov 2011
|
RE: Miss Cheerilee Fanclub
Da freut sich die gute Misses Cherilee so sehr, dass sie gleich ein Herzchen für dich dabei hat
ansonsten viel Erfolg und Spaß mit deinem ersten Club
|
|
|
26.02.2013 |
starfox
Cheerilee's Student
Trixies Quizmaster
Beiträge: 5.620
Registriert seit: 16. Aug 2012
|
RE: Miss Cheerilee Fanclub
(26.02.2013)hagi schrieb: Erhmaghed!
Wie kommt es das ich noch nicht im Cheerilee Fanclub bin?
Ich bitte darum das baldmöglichst zu korregieren
Cheerilee is best Teacher
Das ist schnell korrigiert, schon drückst du die Schulbank. Willkommen im Club
(26.02.2013)MaSc schrieb: Da freut sich die gute Misses Cherilee so sehr, dass sie gleich ein Herzchen für dich dabei hat
ansonsten viel Erfolg und Spaß mit deinem ersten Club
Vielen Dank MaSc Freue mich auch sehr, ist es doch ein Club für ein Pony das mir sehr an Herzen liegt (passend zum Bild^^)
|
|
|
27.02.2013 |
Hagi
Travelpony
Beiträge: 6.116
Registriert seit: 08. Sep 2012
|
RE: Miss Cheerilee-please teach us
Heute steht Kunst auf dem Stundenplan!
Source
Source
Source
Source
Source
Source
Source
Weiß einer von euch was diese Formel an der Tafel heißen soll? Die ist auf einer ganzen Menge Cheerilee Bilder drauf Eine Verschwörung?
|
|
|
27.02.2013 |
starfox
Cheerilee's Student
Trixies Quizmaster
Beiträge: 5.620
Registriert seit: 16. Aug 2012
|
RE: Miss Cheerilee-please teach us
@Corus, schön dich in der Klasse willkommen heißen zu können^^
@hagi, *ARGH*, ich weiß genau das ich mal was ausführlicheres bezüglich der Formel gelesen habe, komm nur nicht mehr drauf wo das war... (haben wir einen Mathemathiker hier?)
Btw nice Pics, einige davon kannte ich noch garnicht
Hätte hier noch zwei kleine Gifs
|
|
|
28.02.2013 |
starfox
Cheerilee's Student
Trixies Quizmaster
Beiträge: 5.620
Registriert seit: 16. Aug 2012
|
RE: Miss Cheerilee-please teach us
So, ich hab mal etwas gesucht und schließlich so etwas wie eine Beschreibung der Formel gefunden.
Offenbar macht sie in unserer Welt so wie sie aufgeschrieben ist nicht allzuviel Sinn, aber vllt sind die Ponys ja klüger als wir Menschen^^
It is present since Twilight's childhood (you can see it scribbled on the blackboard in the auditorium), and at present times, it appears often in Miss Cheerilee's blackboard in her classroom, many times. I wonder what is she teaching to those little fillies? ;-J
At first glance, it doesn't directly resemble anything what I know. I haven't seen exactly this equation anywhere in my study of Physics. But at the second glance, it contains many familiar symbols, all of which are related to Maxwell's Equations for electromagnetism :-> The symbols used in it are real mathematical symbols, correctly used.
Differential operators
For example, the inversed triangle symbol seen in the numerator is called "nabla", and it symbolzes the "del" differential operator. For three dimensions of space in Cartesian coordinates, it can be expanded like this:
Just a vector sum of partial derivatives for each independent direction of space. When applied to a scalar field, it produces a vector field called gradient, which shows the direction of quickest change of value. When applied to a vector field, it produces a scalar field called divergence, which shows where the vector field is radiating from (or where the sources and sinks are). So let's see now what Miss Cheerilee applies it to.
Electric displacement field
In Miss Cheerilee's Equation, it's applied to a symbol of capital D. This symbol is also known in Electrodynamics: It designates the so-called electric displacement field. At present, this quantity is used a little bit differently than originally by Maxwell in 19th century, because he used it to describe the displacement of electric fluid. At present, we don't treat electricity as a fluid, but a stream of particles (electrons). But no matter the interpretation, the law is the same.
D is a vector quantity (because it has a direction of displacement), so in Miss Cheerilee's Equation, the "del" operator means the divergence of that field: how much it spreads out and from which places. So it's something about radiation of electric fluid from matter. In this way, it's very similar to Gauss's Law, which is the first of Maxwell's Equations for electromagnetism shown here in a modern form:
I need to emphasize that this is not how Maxwell had them written originally! These are really modified versions by Heaviside. This is a whole story of how these equations evolved through history, and how they were modified several times, and there are evidences that some parts of these equations has been purposedly hidden (or censored) from public. But this is a whole another story. If you're interested, we can talk about it someday in some other place, because it's not directly related to ponies. I'm mentioning this just to signal you that there's more in our Science too that meets the eye, and what you can find officially in Physics books is not necessarily everything what's there; some things are still hidden in shadows ;-) So it's worth to be like Twilight Sparkle and dig through these dusty old books sometimes ;-)
Epsilon and mu
The other two symbols from Miss Cherilee's Equation, that is, Greek letters epsilon and mu, are also important in Electrodynamics, as you can see in the following version of Maxwell's Equations:
(See? I told you that there are many different forms of Maxwell's Equations :-P )
The former (epsilon) is called electric permittivity, and the latter (mu) is magnetic permeability. In official books you'd be told that both are constants, and that they're some special features of Nature itself which have to be taken from measurements. This is a lie. They're no more special than the units we've chosen arbitrarily for measuring electric charges, forces, distances and time. If we've chosen different units, we'd have to tweak these constants to match the reality again. They're just conversion factors resulting from our choice of units, and we can even chose units in a way that these constants will be all 1 and drop out of these equations, leaving just the bare law of physics laying before our curious eyes. But, back to the subject...
In Miss Cheerilee's equation, these constants are multiplied together in the denominator. What happens when you multiply them together? You'll get the speed of light squared, which appears also in wave equation, or in the famous Einstein's formula for mass and energy equivalence (E = m c2). So Miss Cheerilee is apparently comparing the spreading out of electric fluid from matter with the speed of light. Why? I wish I could know 9_9, but it all seems plausible for me.
Curvature of space
Also the small little triangle added to the whole fraction has a meaning in Mathematics and is used in Field Theory. It is just the "del" operator described above, taken twice in a row (or squared), that is, the second derivative. It is called Laplace's differential operator (or laplacian in short), and it calculates the curvature of space (or how much does it deviate from the average level of equilibrium). It is used widely in Electrodynamics for calculating electric potentials for a given distribution of electric charges in space. It works this way: When you have an electric potential field (which is scalar), and apply the "del" operator once, you'll get the gradient of this potential (the rate of change), which is a vector field (because it can change differently in different directions). This vector field is just electric field. When you apply the "del" operator once again (to get the laplacian), you'll get the divergence of that electric field, or "how much it spreads out". And it spreads out from electric charges, so it should be somehow related to where these charges are located in space.
So you can clearly see that Miss Cherilee's Equation has plenty of connections with Maxwell's Equations for electromagnetism. Unfortunately, it doesn't match any of the official forms of the four Maxwell's Equations known at present. Also, I couldn't transform it to any of them myself.
Well, there's always an option that this equation is one of those missing Maxwell's Equations from his original Field Theory, concerning gravity :-> The picture of a planet with rings or orbit below the equation seems to suggest it a little bit ;-J Well, I'll have to massage these equations a little bit further in some near future...
Ein paar Pics dürfen natürlich auch nicht fehlen
(Dieser Beitrag wurde zuletzt bearbeitet: 28.02.2013 von starfox.)
|
|
|
28.02.2013 |
Hagi
Travelpony
Beiträge: 6.116
Registriert seit: 08. Sep 2012
|
RE: Miss Cheerilee-please teach us
Da tun sich ja verschwörungsabgründe auf bei der guten miss cheerilee^^
Nette bilder Ubrigens. Am Besten finde ich das gif
|
|
|
28.02.2013 |
Daylight
Wonderbolt
Beiträge: 2.375
Registriert seit: 07. Sep 2012
|
RE: Miss Cheerilee-please teach us
(28.02.2013)starfox schrieb: So, ich hab mal etwas gesucht und schließlich so etwas wie eine Beschreibung der Formel gefunden.
Offenbar macht sie in unserer Welt so wie sie aufgeschrieben ist nicht allzuviel Sinn, aber vllt sind die Ponys ja klüger als wir Menschen^^
It is present since Twilight's childhood (you can see it scribbled on the blackboard in the auditorium), and at present times, it appears often in Miss Cheerilee's blackboard in her classroom, many times. I wonder what is she teaching to those little fillies? ;-J
At first glance, it doesn't directly resemble anything what I know. I haven't seen exactly this equation anywhere in my study of Physics. But at the second glance, it contains many familiar symbols, all of which are related to Maxwell's Equations for electromagnetism :-> The symbols used in it are real mathematical symbols, correctly used.
Differential operators
For example, the inversed triangle symbol seen in the numerator is called "nabla", and it symbolzes the "del" differential operator. For three dimensions of space in Cartesian coordinates, it can be expanded like this:
Just a vector sum of partial derivatives for each independent direction of space. When applied to a scalar field, it produces a vector field called gradient, which shows the direction of quickest change of value. When applied to a vector field, it produces a scalar field called divergence, which shows where the vector field is radiating from (or where the sources and sinks are). So let's see now what Miss Cheerilee applies it to.
Electric displacement field
In Miss Cheerilee's Equation, it's applied to a symbol of capital D. This symbol is also known in Electrodynamics: It designates the so-called electric displacement field. At present, this quantity is used a little bit differently than originally by Maxwell in 19th century, because he used it to describe the displacement of electric fluid. At present, we don't treat electricity as a fluid, but a stream of particles (electrons). But no matter the interpretation, the law is the same.
D is a vector quantity (because it has a direction of displacement), so in Miss Cheerilee's Equation, the "del" operator means the divergence of that field: how much it spreads out and from which places. So it's something about radiation of electric fluid from matter. In this way, it's very similar to Gauss's Law, which is the first of Maxwell's Equations for electromagnetism shown here in a modern form:
I need to emphasize that this is not how Maxwell had them written originally! These are really modified versions by Heaviside. This is a whole story of how these equations evolved through history, and how they were modified several times, and there are evidences that some parts of these equations has been purposedly hidden (or censored) from public. But this is a whole another story. If you're interested, we can talk about it someday in some other place, because it's not directly related to ponies. I'm mentioning this just to signal you that there's more in our Science too that meets the eye, and what you can find officially in Physics books is not necessarily everything what's there; some things are still hidden in shadows ;-) So it's worth to be like Twilight Sparkle and dig through these dusty old books sometimes ;-)
Epsilon and mu
The other two symbols from Miss Cherilee's Equation, that is, Greek letters epsilon and mu, are also important in Electrodynamics, as you can see in the following version of Maxwell's Equations:
(See? I told you that there are many different forms of Maxwell's Equations :-P )
The former (epsilon) is called electric permittivity, and the latter (mu) is magnetic permeability. In official books you'd be told that both are constants, and that they're some special features of Nature itself which have to be taken from measurements. This is a lie. They're no more special than the units we've chosen arbitrarily for measuring electric charges, forces, distances and time. If we've chosen different units, we'd have to tweak these constants to match the reality again. They're just conversion factors resulting from our choice of units, and we can even chose units in a way that these constants will be all 1 and drop out of these equations, leaving just the bare law of physics laying before our curious eyes. But, back to the subject...
In Miss Cheerilee's equation, these constants are multiplied together in the denominator. What happens when you multiply them together? You'll get the speed of light squared, which appears also in wave equation, or in the famous Einstein's formula for mass and energy equivalence (E = m c2). So Miss Cheerilee is apparently comparing the spreading out of electric fluid from matter with the speed of light. Why? I wish I could know 9_9, but it all seems plausible for me.
Curvature of space
Also the small little triangle added to the whole fraction has a meaning in Mathematics and is used in Field Theory. It is just the "del" operator described above, taken twice in a row (or squared), that is, the second derivative. It is called Laplace's differential operator (or laplacian in short), and it calculates the curvature of space (or how much does it deviate from the average level of equilibrium). It is used widely in Electrodynamics for calculating electric potentials for a given distribution of electric charges in space. It works this way: When you have an electric potential field (which is scalar), and apply the "del" operator once, you'll get the gradient of this potential (the rate of change), which is a vector field (because it can change differently in different directions). This vector field is just electric field. When you apply the "del" operator once again (to get the laplacian), you'll get the divergence of that electric field, or "how much it spreads out". And it spreads out from electric charges, so it should be somehow related to where these charges are located in space.
So you can clearly see that Miss Cherilee's Equation has plenty of connections with Maxwell's Equations for electromagnetism. Unfortunately, it doesn't match any of the official forms of the four Maxwell's Equations known at present. Also, I couldn't transform it to any of them myself.
Well, there's always an option that this equation is one of those missing Maxwell's Equations from his original Field Theory, concerning gravity :-> The picture of a planet with rings or orbit below the equation seems to suggest it a little bit ;-J Well, I'll have to massage these equations a little bit further in some near future...
Ein paar Pics dürfen natürlich auch nicht fehlen
Des Gif ist ja mal süß
Und es gibt hier einen Fanclub zur besten Lehrerin?
Ansonsten, interessante Sachen über die Formel, einen Teil hab ich auch verstanden, für den Rest fehlt mir das Englisch...Cheerilee kennt also eine der verschollenen Maxwell-Relationen, soso
Und, ach ja, bitte trage mich ein, ich hab auch ein Bild im Schlepptau
|
|
|
28.02.2013 |
starfox
Cheerilee's Student
Trixies Quizmaster
Beiträge: 5.620
Registriert seit: 16. Aug 2012
|
RE: Miss Cheerilee-please teach us
Ein neuer Schüler, herzlich willkommen Daylight und vielen Dank für das Bild^^
Here, have some Wallpapers
|
|
|
02.03.2013 |
Craidly
Enchantress
Beiträge: 661
Registriert seit: 28. Jul 2012
|
RE: Miss Cheerilee-please teach us
Ich würde auch gerne dabei sein.
Weil sie einfach die beste Lehrerin ist!
|
|
|
03.03.2013 |
starfox
Cheerilee's Student
Trixies Quizmaster
Beiträge: 5.620
Registriert seit: 16. Aug 2012
|
RE: Miss Cheerilee-please teach us
(02.03.2013)Craidly schrieb: Ich würde auch gerne dabei sein.
Weil sie einfach die beste Lehrerin ist!
Dann schnapp dir einen freien Stuhl und lass dich in der Klasse willkommen heißen^^.
Das zweite Bild ist süß, hatte die kleine Cheerilee wohl ein Missgeschick
Da sie ja für den Hearts & Hooves Day keinen Partner hatte, bis die CMC das Ganze in den Huf nahmen, hier ein paar Shipping-Vorschläge:
|
|
|
03.03.2013 |
Unkraut
Wonderbolt
Beiträge: 1.040
Registriert seit: 22. Feb 2013
|
RE: Miss Cheerilee-please teach us
GERNE dabei^^
|
|
|
04.03.2013 |
Silky Skene
Wonderbolt
Beiträge: 2.445
Registriert seit: 01. Aug 2012
|
RE: Miss Cheerilee-please teach us
Oh, ich wäre gern dabei!
Ihre Farben, ihr Charakter, ihr Auftreten... sie ist toll!
Außerdem war die Hearts and Hooves Day Folge eine meiner allerliebsten~
|
|
|
04.03.2013 |
starfox
Cheerilee's Student
Trixies Quizmaster
Beiträge: 5.620
Registriert seit: 16. Aug 2012
|
RE: Miss Cheerilee-please teach us
Na dann viel Spaß in unserer kleinen Runde MrLPedo und Hausfreak, schön euch hier zu haben^^
Hearts and Hooves Day war wirklich eine klasse Folge, ich frage mich immernoch, warum Miss Cheerilee und Big Mac so belustigt waren über den Versuch, die Beiden zu verkuppeln. Ist leider viel zu wenig bekannt über ihre Vergangenheit.
Wer weiß, vielleicht waren die früher schonmal...
Noch ein paar Pics aus Cheerilees Teenagerzeit
(Dieser Beitrag wurde zuletzt bearbeitet: 04.03.2013 von starfox.)
|
|
|
06.03.2013 |
starfox
Cheerilee's Student
Trixies Quizmaster
Beiträge: 5.620
Registriert seit: 16. Aug 2012
|
RE: Miss Cheerilee-please teach us
Normalerweise ist unsere Miss Cheerilee ja die Liebenswürdigkeit in Person
...und hat sich auch noch unter Kontrolle wenn die CMC mal wieder über die stränge schlagen
...aber wehe jemand will ihren Schülern etwas böses, dann ist alles zu spät.
|
|
|
12.03.2013 |
MaSc
Saucy Mod
Beiträge: 17.765
Registriert seit: 19. Nov 2011
|
RE: Miss Cheerilee-please teach us
Vote for... teaching?
ich hoffe, die gif ist nicht so soßi :/
und hier offenbar noch ein Bild aus ihrer Studentenzeit
|
|
|
15.03.2013 |
Daylight
Wonderbolt
Beiträge: 2.375
Registriert seit: 07. Sep 2012
|
RE: Miss Cheerilee-please teach us
Mehr Bilder
Ich will auch mal wieder einmal aufzeigen und Aktvität ins Klassenzimmer bringen
|
|
|
|