Dieses Forum nutzt Cookies
Dieses Forum verwendet Cookies, um deine Login-Informationen zu speichern, wenn du registriert bist, und deinen letzten Besuch, wenn du es nicht bist. Cookies sind kleine Textdokumente, die auf deinem Computer gespeichert sind; Die von diesem Forum gesetzten Cookies düfen nur auf dieser Website verwendet werden und stellen kein Sicherheitsrisiko dar. Cookies auf diesem Forum speichern auch die spezifischen Themen, die du gelesen hast und wann du zum letzten Mal gelesen hast. Bitte bestätige, ob du diese Cookies akzeptierst oder ablehnst.

Ein Cookie wird in deinem Browser unabhängig von der Wahl gespeichert, um zu verhindern, dass dir diese Frage erneut gestellt wird. Du kannst deine Cookie-Einstellungen jederzeit über den Link in der Fußzeile ändern.
Hallo, Gast! (Registrieren)
26.12.2024, 15:05


Bronies.de wünscht allen Usern frohe Weihnachten.


e^(i*π)+1=0 [Der Mathe-Thread]
04.06.2014
Blue Sparkle Offline
Ex-Bannhammeradmin


Beiträge: 11.615
Registriert seit: 22. Mär 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
Es bricht nicht zusammen, aber man verliert die Möglichkeit sie anzuordnen, was manche Sachen schon etwas umständlich macht.

Hättest du vielleicht die Funktionsvorschrift zur Hand? Dann könnten wir dir auch sofort sagen wie die Lösung lautet.

[Bild: 00528cd316.png]
Zitieren
04.06.2014
Meganium Offline
Busfahrerpony
*


Beiträge: 11.204
Registriert seit: 15. Jan 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
Achja... die imaginären Zahlen. Cool

Neben den komplexen Zahlen soll es ja auch noch die hyperkomplexen Zahlen geben. Dann heißt es statt "3" oder "3+4i" dann plötzlich 3+4i+5j+6k+7l+...
Oder statt j,k dann eben i. von .=0 bis .=∞.

Wie nützlich hyperkomplexe Zahlen sind, kann ich jedoch nicht sagen...

...
[Bild: bug.gif]
Zitieren
04.06.2014
TrenkTausendschlag Offline
Changeling
*


Beiträge: 851
Registriert seit: 12. Sep 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
@ Irons Problem:

So wie ich das verstanden habe, beschreibt die Ordinate die Anzahl der Liter regen und die Abzisse eben die Zeit in stunden. Daher macht es auch für mich Sinn, wenn es hier im Intervall von 0 bis 24 zu keinem Schnittpunkt mit der Abzisse kommt und sich zusätzlich der Graph oberhalb der Abzisse befindet. Negative Mengen an Regen sind wohl auszuschließen. Folgerichtig bekommt Iron auch keine Schnittepunkte in diesem Intervall heraus und der Regen fiel während der vollen 24 Stunden Twilight happy
Zitieren
04.06.2014
IronMetal Abwesend
Wetterpony
*


Beiträge: 4.614
Registriert seit: 04. Nov 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
@404Complaint: Also es ging um Niederschlagswerte während eines Tages. Die X-Achse begann bei 0 Uhr (was auch der Ursprung war) und endete bei 24 Uhr. Und es wurde berechnet, wie hoch der jeweilige Wasserstand in einem Fass war in diesem Zeitraum.

@Blue: Meine Klausur liegt gerade bei meiner Lehrerin. Deswegen weiß ich die Funktion nicht mehr. Wenn ich die Klausur wieder habe kann ich euch gerne die Funktion nennen. Eventuell habe ich auch was übersehen beim Lesen oder die Frage falsch interpretiert.
(Dieser Beitrag wurde zuletzt bearbeitet: 04.06.2014 von IronMetal.)
Zitieren
05.06.2014
404compliant Offline
GalaCon Volunteer-Stratege Carrot Not Found
*


Beiträge: 8.348
Registriert seit: 23. Okt 2011

RE: e^(i*π)+1=0 [Der Mathe-Thread]
(04.06.2014)Meganium schrieb:  Neben den komplexen Zahlen soll es ja auch noch die hyperkomplexen Zahlen geben. Dann heißt es statt "3" oder "3+4i" dann plötzlich 3+4i+5j+6k+7l+...

Quaternionen. Und nicht soll es geben, sondern kann man sich definieren. Merke: Mathematiker dürfen alles, so lange sie sich nicht in Widersprüche verwickeln.

Der Clou bei solchen algebraischen Erweiterungen ist, dass die komplexen Zahlen genau wie die Quaternionen noch einen Körper bilden, d.H. es gibt noch eine sinnvolle Division.

Nur drei algebraische Erweiterungen der reellen Zahlen ergeben noch einen Körper: Die Erweiterung um ein Element (i) ergibt die komplexen Zahlen, die Erweiterung um drei (i,j,k) ergibt die Quaternionen, die um 7 (i,j,k,l,m,n,o) ergibt die Oktonionen. Die naheliegende, nächste Erweiterung um 15 funktioniert dagegen nicht mehr, da mit jeder noch größeren Erweiterung zunehmend mathematische Rechenregeln 'verloren' gehen (bei den Quaternionen gilt nicht mehr a*b=b*a, die Oktonionen verlieren zusätzlich die Eigenschaft (a*b)*c=a*(b*c) ), bis die Körpereigenschaften bei 15 ganz zusammen brechen.

(04.06.2014)IronMetal schrieb:  @404Complaint: Also es ging um Niederschlagswerte während eines Tages. Die X-Achse begann bei 0 Uhr (was auch der Ursprung war) und endete bei 24 Uhr. Und es wurde berechnet, wie hoch der jeweilige Wasserstand in einem Fass war in diesem Zeitraum.

Sag ja, die Aufgabenstellung ist schon dämlich. Eine Funktion 3. Grades kann (bis auf triviale Sonderfälle) nicht 'stehen bleiben', d.H. der Zustand "Es regnet nicht" existiert gar nicht. Schlimmer noch, es gibt negativen Regen.
Wenn man jetzt annimmt, dass Wasser auch abfließen kann (negativ), kommt man sofort zu dem Problem, was passiert, wenn gleichzeitig Wasser abfließt, und Regen hinzu kommt?

Man müsste schon in der Aufgabe explizit festschreiben, dass Wasser nur dann abfließt, wenn es gleichzeitig nicht regnet. Genauer gesagt, muss jemand den Wasserhahn genau in dem Moment aufdrehen, wo es aufhört zu regnen, und genau in dem Moment zudrehen, wo es wieder anfängt. Was die Aufgabenstellung restlos absurd macht. Facehoof

Zitieren
05.06.2014
TrenkTausendschlag Offline
Changeling
*


Beiträge: 851
Registriert seit: 12. Sep 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
@ 404 compliant

Die Funktion und die Aufgabe machen eben genau dann Sinn, wenn der Graph im Intervall von 0 bis 24 oberhalb der abzisse liegt, es also fortwährend regnet. Da nur einen schnittpunkt im negativen Bereich gefunden hat, könnte das hier sogar der Fall sein.
Zitieren
05.06.2014
Blue Sparkle Offline
Ex-Bannhammeradmin


Beiträge: 11.615
Registriert seit: 22. Mär 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
@Meganium: Quaternionen kann man beispielsweise dazu verwenden Drehungen im Raum einfach darzustellen. Mit Komplexen Zahlen lassen sich Drehungen in der Ebene als Additionen darstellen. Mit Quaternionen entsprechend.
Das ist zum Beispiel so viel ich weiß in der Modellierung von 3D Vorgängen am Computer wichtig. Zum Beispiel in Spielen, weil man nicht permanent Winkelfunktionen berechnen muss.
Ist aber schon ewig her, seit ich davon gehört habe, also kein Gewähr.

[Bild: 00528cd316.png]
Zitieren
05.06.2014
Meganium Offline
Busfahrerpony
*


Beiträge: 11.204
Registriert seit: 15. Jan 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
Was wäre ein Vorteil gegenüber gewöhnlicher Matrizen? Nehmen wir beispielsweise jeden lokalisierbaren Ort/jedes lokalisierbares Teilchen mit den Koordinaten x,y,z und t an (x,y,z,t), wobei t der Zeitpunkt eines Teilchens am entsprechenden Punkt x,y,z ist.

Wann würde es Sinn machen, den Wert des Teilchens in der Quaternionen-Schreibweise zu beschreiben? Man nehme die Freiheit, dass die komplexen Werte die Raumkoordinaten sind, und der "reale" Wert die Zeit, weil passt so wunderbar.

P(t,x,y,z)=t+xi+yj+zk

...
[Bild: bug.gif]
Zitieren
05.06.2014
Blue Sparkle Offline
Ex-Bannhammeradmin


Beiträge: 11.615
Registriert seit: 22. Mär 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
Die Anzahl der Rechnungen.
Wenn ich mich nicht vertue steigt die Anzahl der Rechnungen mit der Dimension bei Matrizen quadratisch bei den Quaternionen linear an.
Abgesehen davon musst du glaube ich nur Zahlen addieren und keine Winkelfunktionen ausrechnen.

[Bild: 00528cd316.png]
Zitieren
05.06.2014
Jandalf Offline
Aculy is Dolan
*


Beiträge: 4.396
Registriert seit: 04. Apr 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
(05.06.2014)404compliant schrieb:  
(04.06.2014)IronMetal schrieb:  @404Complaint: Also es ging um Niederschlagswerte während eines Tages. Die X-Achse begann bei 0 Uhr (was auch der Ursprung war) und endete bei 24 Uhr. Und es wurde berechnet, wie hoch der jeweilige Wasserstand in einem Fass war in diesem Zeitraum.

Sag ja, die Aufgabenstellung ist schon dämlich. Eine Funktion 3. Grades kann (bis auf triviale Sonderfälle) nicht 'stehen bleiben', d.H. der Zustand "Es regnet nicht" existiert gar nicht. Schlimmer noch, es gibt negativen Regen.
Wenn man jetzt annimmt, dass Wasser auch abfließen kann (negativ), kommt man sofort zu dem Problem, was passiert, wenn gleichzeitig Wasser abfließt, und Regen hinzu kommt?

Man müsste schon in der Aufgabe explizit festschreiben, dass Wasser nur dann abfließt, wenn es gleichzeitig nicht regnet. Genauer gesagt, muss jemand den Wasserhahn genau in dem Moment aufdrehen, wo es aufhört zu regnen, und genau in dem Moment zudrehen, wo es wieder anfängt. Was die Aufgabenstellung restlos absurd macht. Facehoof

Dafür müste man jetzt natürlich die genaue Aufgabenstellung kennen. Es wäre durchaus möglich eine Formel aufzustellen, in der der Wasserstand im Fass nie abnimmt (indem man beispielsweise ausschließlich addiert) aber mit einer Funktion dritten grades wäre es tatsächlich nicht möglich, dass es nicht regnet. Das würde bedeuten, dass die Steigung null beträgt und somit ein Scheitelpunkt vorliegt. Danach würde dann wohl der von 404 beschriebene Antiregen einsetzen Tongue

Killing is badong!
Zitieren
05.06.2014
IronMetal Abwesend
Wetterpony
*


Beiträge: 4.614
Registriert seit: 04. Nov 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
Naja, eventuell habe ich die Formel auch wirklich falsch im Kopf. Aber ich meine, dass meine Klassenkameraden meinten, dass sie genau die selben Probleme hatten.
Zitieren
05.06.2014
Meganium Offline
Busfahrerpony
*


Beiträge: 11.204
Registriert seit: 15. Jan 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
Jetzt kommen erstmal die Pfingstferien, sofern du die Arbeit morgen nicht zurückbekommst. Wir haben noch genügend Zeit, das Problem zu erörtern. Wink

...
[Bild: bug.gif]
Zitieren
05.06.2014
IronMetal Abwesend
Wetterpony
*


Beiträge: 4.614
Registriert seit: 04. Nov 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
Jo, habe erst übernächste Woche wieder Mathe. Und meine Lehrerin hat noch viele andere Klausuren zu korrigieren. Kann also etwas dauern noch.
Zitieren
05.06.2014
Jandalf Offline
Aculy is Dolan
*


Beiträge: 4.396
Registriert seit: 04. Apr 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
(05.06.2014)Meganium schrieb:  Jetzt kommen erstmal die Pfingstferien, sofern du die Arbeit morgen nicht zurückbekommst. Wir haben noch genügend Zeit, das Problem zu erörtern. Wink

Keinen Plan wo IronMetal herkommt, aber Pfingstferien gibt es nächste Woche in ganzen zwei Bundesländern. Die Chancen stehen also gar nicht schlecht, dass die Wartezeit nicht ganz so lang ist.

Killing is badong!
Zitieren
15.06.2014
Andrew Offline
Enchantress
*


Beiträge: 675
Registriert seit: 28. Jul 2013

RE: e^(i*π)+1=0 [Der Mathe-Thread]
Hei,
kennt irgendjemand die Formel zum berechen der nach Kommastellen von Pi?
Zitieren
15.06.2014
Blue Sparkle Offline
Ex-Bannhammeradmin


Beiträge: 11.615
Registriert seit: 22. Mär 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
Eine einfache Formel gibt es da nicht. Aber etliche Iterationsverfahren. Pi ist der Grenzwert etlicher Folgen und kann so genähert werden.
https://de.wikipedia.org/wiki/Kreiszahl

Grund dafür ist, dass Pi eine sogenannte Transzendente Zahl ist. Das Bedeutet, dass man sie nicht als lösung eines Polynoms darstellen kann, sondern nur als Grenzwert einer Reihe.

[Bild: 93a267a29af33710f2387883c622f7ee.png]
Das ist wohl die bekannteste Darstellung.

[Bild: 00528cd316.png]
Zitieren
17.06.2014
ManfredDerMoosstein Offline
Enchantress
*


Beiträge: 593
Registriert seit: 15. Aug 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
(15.06.2014)Blue Sparkle schrieb:  Eine einfache Formel gibt es da nicht. Aber etliche Iterationsverfahren. Pi ist der Grenzwert etlicher Folgen und kann so genähert werden.
https://de.wikipedia.org/wiki/Kreiszahl

Grund dafür ist, dass Pi eine sogenannte Transzendente Zahl ist. Das Bedeutet, dass man sie nicht als lösung eines Polynoms darstellen kann, sondern nur als Grenzwert einer Reihe.

[Bild: 93a267a29af33710f2387883c622f7ee.png]
Das ist wohl die bekannteste Darstellung.

Man könnte auch folgendes nehmen:
-i log(-1) = Pi

Dürfte ich fragen wie du diese schönen Bildchen hinbekommst? Ich kenne die bisher nur von WolframAlpha und einem Imageboard.
Oder nimmst du bereits existierende Bilder?

MaSc stop following me!
(Dieser Beitrag wurde zuletzt bearbeitet: 17.06.2014 von ManfredDerMoosstein.)
Zitieren
17.06.2014
Blue Sparkle Offline
Ex-Bannhammeradmin


Beiträge: 11.615
Registriert seit: 22. Mär 2012

RE: e^(i*π)+1=0 [Der Mathe-Thread]
Das ist ganz schnöde von Wikipedia geklaut.
Hätte ich keines von dort genommen hätte ich aber auch den Formeleditor von Open Office nehmen können. Der ist sehr einfach verständlich und auch vollkommen ausreichend. Ich verwende ihn regelmäßig für die Uni und hatte nie ein Problem damit.

Das Problem mit deiner Darstellung ist allerdings, dass sie so nicht berechenbar ist. Der Zusammenhang stimmt zwar, allerdings muss man den Logarithmus schon kennen und das führt im Grund auf genau so eine Reihendarstellung.

In jedem Fall aber nicht sonderlich effektiv. Diese Reihen konvergieren furchtbar langsam. Ich kenne keine die noch langsamer ist um ehrlich zu sein.

Effektiver sind Berechnungen über Intervallschachtelungen mittels n-ecken mit n sehr groß. Ist deutlich schneller konvergent, und damit wurden auch die ersten relativ guten Darstellungen von Pi gefunden.

[Bild: 00528cd316.png]
Zitieren
17.06.2014
Andrew Offline
Enchantress
*


Beiträge: 675
Registriert seit: 28. Jul 2013

RE: e^(i*π)+1=0 [Der Mathe-Thread]
Hab jetzt ne halbestunde gesucht und das gefunden:
http://bellard.org/pi/
Zitieren
22.06.2014
nonlinear Offline
Silly Filly
*


Beiträge: 90
Registriert seit: 05. Jan 2014

RE: e^(i*π)+1=0 [Der Mathe-Thread]
[Bild: 43730.png]

Erstellt mit Wolfram Mathematica. Es gibt bestimmt einige unter euch, die mit dem Programm schon gearbeitet haben.

@Andrew interessanter Link! Unweigerlich muss ich auch den Film "Pi" denken, der bei mir eine große Faszination für Pi ausgelöst hat.

Am nächsten Morgen hab ich mich verlaufen - Zur falschen Zeit in Sicherheit geglaubt.

Heart HerzoginLuna
(Dieser Beitrag wurde zuletzt bearbeitet: 22.06.2014 von nonlinear.)
Zitieren


Gehe zu:


Benutzer, die gerade dieses Thema anschauen: 29 Gast/Gäste